SIMTRUM

- DC to 800 MHz bandwidths
- Rise times as low as 700 ps
- DC-coupled

The AV-141 series of DC-coupled pulse amplifiers is intended for amplifying nanosecond pulses with bandwidths up to 800 MHz.

Model AV-141C1 offers 20 dB gain (×10) and can generate ± 3 Volts into 50 Ω , with 800 ps rise time and DC-800 MHz bandwidth.

Model AV-141G provide up to \pm 5V to 50 Ω loads (or \pm 10V into high impedance loads), with DC - 20 MHz bandwidth and +10 dB of gain (×3.2) .The input resistance is 10 k Ω or higher.

The unity gain buffer amplifier Model AV-141J offers

- Gain as high as 20 dB
- Peak output amplitude to 5 Volts
- Connecterized modules

 \geq 1 M Ω input resistance, and can generate ±10V into 50 Ω loads with 10 ns rise times.

Models without the -PS suffix require $\pm 15V$ or $\pm 24V$ prime power, and come in a miniature module format.

Models with the -PS suffix come in a larger bench-top instrument format, and operate from 100-240V, 50-60 Hz prime power.

See the AV-143 series of linear amplifiers or the AV-144 series of non-linear amplifiers for output amplitudes up to 100V. Contact Avtech for your special requirements (info@avtechpulse.com).

Model:		AV-141C1 AV-141C1-PS	AV-141G	AV-141J	
Bandwidth:		DC - 800 MHz	DC - 20 MHz	DC - 50 MHz	
Gain:	in dB:	20 dB	10 dB	0 dB	
voltage g	gain (V/V):	+10	+3.2	+1	
Rise/fall time ¹ :		800 ps	15 ns	10 ns	
Input resistance:		50 Ω	≥ 10 kΩ	≥ 1 MΩ	
Peak output: (to 50 Ω)		±3 V	±5 V	± 10 V	
Output resistance:		< 3 Ω	50 Ω	< 3 Ω	
Min. input pulse width:		1.5 ns	30 ns	20 ns	
Max. input pulse width:		No limit.			
Equivalent input noise:		4 nV / √Hz		6 nV / √Hz	
Connectors:		SMA			
Prime power:	-PS:	100 - 240 Volts, 50 - 60 Hz			
	Modules:	±15V, 100 mA	±24V, 2	200mA	
Dimensions:	-PS:	100 mm	100 mm x 215 mm x 375 mm (3.9" x 8.5" x 14.8")		
Modules: 1.4" x 1.1" x 2.3"					

AVTECH

Ø

AC-powered "-PS" instrument

Measured for a pulse from 0V to maximum positive voltage output, between the 20% and 80% amplitude points.
Gain into an open circuit. The gain falls slightly to 0.9 (or -1 dB) when operating into a 50Ω load, due to the 5Ω output resistance.

DC-Powerec Module

Singapore Main Office Telephone: +65 6996 0391 Email: info@simtrum.com

